Archives: Servomk2

Ground truth torque testing for qdd100

First, a limited number of qdd100 servos are available for sale to beta testers!  Check them out at mjbots.com.

After building up the first set of qdd100 servos, I wanted to empirically measure their performance parameters.  Some astute commenters uncovered in my terrible juggling video, that I didn’t actually have any ground truth measure of torque with these actuators.  Given that the ultimate torque is a pretty useful performance metric, it’s a good thing to have a solid understanding of.

Building the quad A1

Now that I have a bunch of the mk2 servos set and ready to go, a new leg design, a new power distribution board to power them, and a raspberry pi3 hat to communicate with them, I built a new quadruped!  I’m calling this the mjbots quad A1, since basically everything is upgraded.

dsc_0362

After I initially assembled the new legs onto the chassis, I realized I had the geometry slightly off and there was some interference through part of the shoulder rotation.  I made up new printed parts and replaced everything in front of the camera.  Thus, watch some high speed robot surgery:

Pre-production mk2 servos

To build a second demonstration quadruped and to generate some development kits, I’ve built up a set of 20 of the mk2 servo.  The production process is working out fairly well, in fact slightly better than I had predicted for overall cycle time.  The servos so far are coming out great, moving smoothly with full power.

Shafts inserted into the planet input

Shafts inserted into the planet input

Output bearing on the planet outputs

Output bearing on the planet outputs

All parts for pre-production mk2 servo in house

I’m planning on building up a set of mk2 servos to test them on a quadruped and make some development kits.  As of now, I’ve got all the materials in house for the build and many things partially assembled!

A bunch of back housings

A bunch of back housings

Back covers post-brushing

Back covers post-brushing

A bunch of planet inputs

A bunch of planet inputs

A test of the final finish of the outer housing

A test of the final finish of the outer housing

Updated leg design for mk2 servo

Since the mk2 moteus servo has slightly different dimensions and a different mounting pattern than my original, I needed up update the full rotation leg design to handle it.  The basic concept is the same, except for some in-progress work on the foot design which I’ll write up later.  The only significant changes were that because of the mk2 design, access to the power and data connectors is much easier.

Here’s a brief CAD snapshot:

Making the reduced weight servo mk2

Earlier I described my design plan for reducing the overall mass of the moteus servo mk2.  Constructing a prototype of this turned out to take many more iterations and time than I had expected!  Along the way I produced and scrapped two front housings, two outer housings and a back housing.

Soooo much PocketNC time for naught!

Soooo much PocketNC time for naught!

I made one complete prototype which only had the weight reduction applied to some of the parts and lacked a back cover and any provision for a wire cover.  It was the one from the moteus controller r4.1 juggling video:

Lots of frameless stators and rotors

While gearing up to make some dev-kits followed by a pre-production run of the moteus servo mk2, I recently received a bunch of frameless rotors and stators.

It’s almost taller than me!

It’s almost taller than me!

Some stators

Some stators

A rotor

A rotor

As with the other custom items, I’ve got some spares of these for sale at shop.mjbots.com if you’re building along with me!  [UPDATE no longer!]

Now it’s time to start building some servos!

wcubed vise for Pocket NC

Just because I’m generally looking for workholding solutions for the Pocket NC, I recently picked up a vise designed for it from wcubed.co.

vise.jpg

Unlike the stock vise that comes with the PNC, this has two movable aluminum jaws.  It can probably hold with greater force than the stock vise, since there is a larger contact area, although the screw mechanism doesn’t necessarily apply the force all that uniformly.  Also, since both jaws are movable, you have to take some care to either manually center things, or do some edgefinding, which isn’t terribly easy on a PNC.

Preparing stock on a CNC Bridgeport

As mentioned previously, I made up some soft jaws to hold 4in round stock in a 6" vise.  My goal was to prepare stock for workholding on the Pocket NC v2-50 to machine prototypes of the front and back housing for the reduced weight moteus servo mk2.

Now, I’ve used those soft jaws to trim down both pieces of stock to the correct length, bore a center hole, and in the case of the front housing, remove a bunch of additional material in a more expeditious manner.  There’s not much more to it than that, so here’s the video: