Archives: Quad

Estimating terrain slope

Last time I discussed the challenges when operating the mjbots quad A1 on sloped surfaces. While there are a number of possible means of tackling this, the approach I’ve gone with for now is to estimate the slope of the terrain under the robot, and use that to determine how to position the center of mass. Here’ll I’ll cover the estimation part of this solution.

On paper, the quad A1 has plenty of information to estimate the terrain under its feet. Between the IMU with attitude estimator, the proprioceptive feedback from the joints, and the ability to move the feet around, it would be obvious to a human whether the ground under them was sloped or level. The challenge here is to devise an algorithm to do so, despite the noise in the IMU, the fact that the feet are not always on the ground, and that as the robot moves, the terrain under it changes.

Operating on sloped surfaces

Not too long ago, I ran some outdoor experiments, and while piloting the quad A1 around, realized that it wasn’t going to get very far if it was restricted to just flat ground.

Since the control algorithms are completely ignorant of slopes, the center of gravity of the machine can easily get too close to the support polygon when resting, and similarly fails to stay balanced over the support line during the trot gait.

New product Monday: pi3hat

I’ve now got the last custom board from the quad A1 up in the mjbots store for sale, the mjbots pi3 hat for $129.

This board breaks out 4x 5Mbps CAN-FD ports, 1 low speed CAN port, a 1kHz IMU and a port for a nrf24l01. Despite its name, it works just fine with the Rasbperry Pi 4 in addition to the 3b+ I have tested with mostly to date. I also have a new user-space library for interfacing with it that I will document in some upcoming posts. That library makes it pretty easy to use in a variety of applications.

Raspberry Pi 4

Only 1 full year after it was released, I managed to get a Raspberry Pi 4 and test it out in the quad A1. I had been delaying doing so because of reports of thermal issues. The Pi 3B+ already ran a little hot and I didn’t want to have to add active cooling into the robot chassis to get it stable.

It looks like the Raspberry Pi engineers have been hard at work because the newer firmware releases have significantly reduced the overall power consumption and thus the thermal load. In my testing so far it only seems “a little” hotter than the 3b+.

Balancing gait in 2D

After getting a gait which looked like it could balance across the leg support line in 1D, I needed to extend that to 2D and try it out on the robot.

Extension to 2D

Extending this to two dimensions wasn’t too bad. I just did a bunch of geometry to follow the path traced out by a given 2 dimensional velocity and rotation rate, intersected with a line segment:

Given this function, the logic to select a swing target is basically the same as in the 1 dimensional case. We now create two “virtual legs”, which consist of two feet ganged together and produce a single support line. At each time instant when all legs are in stance, we look at the time remaining until each of the virtual legs would cross the center of mass at the current velocity. As soon as one hits the half-swing point, we start a swing.

Primitive gait balancing - 1D

I’m working to improve the walking gait of the mjbots quad A1. In this iteration, I wanted to tackle an incremental step towards a more fully dynamic gait, but one that will still greatly increase the capability of the machine. As mentioned last time, the current walking gait cycles between all four legs, and then alternative opposing corner legs in order to move laterally. I’d like to keep that same basic structure, but be a bit smarter about what happens during the swing phase.

First steps towards more dynamic gaits

Now I’ve got a machine, the mjbots quad A1, which is capable of dynamic motions, but the only gait which takes advantage of these capabilities is the pronking one. That gait has the benefit that the dynamics are very simple. The entire time that that robot is in contact with the ground, it is in contact with all 4 legs, so in that regime it is fully controllable. Since it is fully controllable up to the point of lift-off, we can ensure that there is basically zero rotational rate while the machine is mid-flight, which means that it lands with all four legs largely at the same time. Of course, pronking isn’t a very fast or efficient way of getting anywhere, so I wanted to make the first steps… I guess pun intended, towards improving the more general walking algorithm to make the machine move faster in a more robust manner.

Another foot failure

The first feet I built for the quad A0 lasted for maybe an hour of walking before snapping off. The current design, has been much more robust - completing a lot of intensive walking and jumping. However, all things must fail:

Looking at the failure, I was surprised I used so little material in the region in question. For now, I just made it 4x thicker and we’ll see how long that lasts, although ultimately it may need to be a different design or machined instead of 3d printed.

Cartesian leg PD controller

As I am working to improve the gaits of the mjbots quad A1, one aspect I’ve wanted to tackle for a long time is improving the compliance characteristics of the whole robot. Here’s a small step in that direction.

Existing compliance strategy

The quad A1 uses qdd100 servos for each of its joints. The “qdd” in qdd100 stands for “quasi direct drive”. In a quasi direct drive actuator, a low gearing ratio is used, typically less than 10 to 1, which minimizes the amount of backlash and reflected inertia as observed at the output. Then, high rate electronic control of torque in the servo based on current and position feedback allows for dynamic manipulation of the spring and dampening of the resulting system.

Improved swing trajectory

Now that I finally have tplot2 working sufficiently to diagnose problems in 3D, it is time to start actually fixing those problems. The first obvious thing I noticed when watching data replay was that the legs scooted around a lot after making contact with the ground. Absent 3D visualization, I knew something was wrong, but couldn’t easily tell what.

Diagnosing the first problem

Once I was able to plot the commanded position and velocity trajectory, I could clearly see a number of problems. For one, the trajectory was not terribly achievable. The velocity jumped in a discontinuous manner between different phases of the swing cycle, which resulted in large tracking errors when moving the physical legs: