Archives: 2019

Flux braking with the moteus controller

When I was trying my first pronking, I kept having over-voltage issues when the servos were trying to dump power back onto the DC bus, no matter how high I set the voltage limit.  During that test, I was running with a nearly full battery, so my working theory is that the battery protection circuit was disconnecting the battery either because of too high a charging current, or too high a system voltage.  When the battery was disconnected, and the servos were still putting power onto the bus, that resulted in the voltage spiking arbitrarily high, followed by a total loss of power when they all faulted and then nothing was powering the bus at all.

HTML + websocket joystick control

Now that I had a controlled jump with the quad A0, I wanted to chain those jumps together into a pronking gait.  The first part of that was creating a mechanism by which I could actually command varying motion commands.  For the previous full rate experiments, all I had built was a CLI that allowed you to type commands.  That sufficed for initiating a single jump, but not really for moving around in space with a dynamic gait.  Something with a joystick would be necessary.

shop.mjbots.com

In my quest to create a more dynamic quadruped, I’ve started accumulating a lot of parts from bulk buys that could be reasonably useful to other hobbyists and experimenters.  To maybe make life easier for everyone, I’ve started up what may be the worlds ugliest online shop where you can buy some of these components.  For now, I have some bearings and custom gears that are useful when building servos for dynamic robots.

quad A0 chassis v2 - construction

After CADing up the second revision of the chassis, I set to work with the 3d printer and printed up all the pieces.

dsc_1575

There were a few minor post-modifications I had to make, which were all much faster than printing the pieces again.  All the holes for M3 bolts were slightly undersized, so I drilled them out.  The battery holder had a channel to let the power wires out, which inexplicably terminated before reaching the edge of the holder.  I also had to install all the heat set inserts.

quad A0 chassis v2 - design

As described in my roadmap, the chassis for the quad A0 was on the verge of failing, or causing the shoulder motors themselves to fail, after only a few hours of walking around.  Also, it was nigh impossible to assemble, disassemble, or change anything about it.  Thus, the chassis v2!

chassis_v2_2019-oct-09_01-54-51pm-000_customizedview10225780210

More than one piece

The old chassis was a single monolithic print that took about 35 hours of print time.  Because of its monolithic nature, there were lots of interference problems during assembly.  For instance, the shoulder motors could only have 4 of the 6 possible bolts installed, and 2 more of the bolts extended beyond the chassis entirely.  I decided to break it up into multiple pieces, which uses a lot more inserts and bolts, but should allow for a feasible order of assembly and manageable repair.

quad A0 - Controlled jump

Now that I have a full rate inverse kinematics and dynamics solution, I can begin to do more interesting things.  A while ago I did the first jump on the quad A0 – in that video I used a limited technique just to verify that the platform was indeed capable of jumping.  The joints were commanded in an open loop fashion, and really only at the transition points of the jump sequence, relying on the control loops in the servo to actually achieve each stage of the jump cycle.  That resulted in the jump only being minimally controlled… tracking errors would result in the robot taking off from a not-level position and the timing was not super reliable to boot.

Full rate inverse dynamics on the quad A0

Last time I updated my inverse kinematics solution to also include dynamics, velocities and forces.  Now I’m in the process of integrating this onto the robot.

The old SMMB / HerkuleX control software commanded the servo positions in an open loop, which did not take into account the actual position of the joints in any way.  What I’ve done now is implemented a control flow where at each cycle the state of all 12 servos is sampled, then the control laws are applied based on that state, then the resulting commands are sent out.

Mammal IK (and now dynamics) revisited

A while ago I derived some closed form solutions for the inverse force dynamics for a 2 dimensional mammal geometry leg.  Now that I want to execute more dynamic gaits, I need to be able to control the velocity and force of the 3 dimensional leg in real time.  That means I need to be able to go forward and back between the two representations.  The first being joint angles, joint velocities, and joint torques – the second being 3D position, velocity, and force.

mjbots discord server

Over the last couple of months, I’ve had an increasing number of people looking for help with self-built moteus controllers which is great!  However, until today there hasn’t been a great way to get help.  Blog comments fall off the front page quickly, and there is no real other mechanism.

Thus, I’ve created a discord server:

There you can chat about the moteus controller, servo, or the quada0 and get feedback and help in closer to real time.  Thanks for collaborating!