quad A1 leg experiment: part 3
Yet another in the series on building a new leg for the quad A1:
Yet another in the series on building a new leg for the quad A1:
In the spirit of my last post on the topic, here is another video-only update on a new leg design for the quad A1:
I’m going to try something new for this effort, and instead of making a bunch of blog posts culminating in a video, I’m going to make a bunch of intermediate progress videos. They may, but may not, culminate in an overview blog post. Here’s the first!
Here’s the approximately annual giant video update:
If you’re interested in any of the topics in more detail, I’ve collected links to individual posts for each of the referenced items below.
Thanks for all your support in the last year!
Announcement of moteus r4.3: Production moteus controllers are here!
In two previous posts (part 1, part 2) I discussed some changes I made to the gait sequencing on the quad A1. Things are working relatively well now, sufficient that I was able to take this compilation video in one sitting without any gait or mechanical failures! I actually took a lot of the outdoor shots from this video in the same session, so things are definitely getting more robust.
It’s only October, but the weather is what it is and robots will do what they do!
While testing the improved gait sequencing for the quad A1 I got some footage of it traversing a few different types of outdoor semi-rugged terrain.
The first clip shows it walking over some tree roots. In this particular instance, it just uses a high stepping gait, which allows the feet to get on top of the root. The gait sequencing doesn’t handle walking over the taller part of the root very well yet… the robot can get “high centered” on two legs, with the other two flailing in the air.
Now that the quad A1 has been running faster, it has started “running” through its ad-hoc cable management too. After replacing a harness for the nth time, I decided to actually design something rather than just keep re-building over and over again.
My current best effort uses semi-flexible nylon split conduit, captured in 3d printed forms at each joint. Inside that conduit is basically the same harness I had before, with the cables selected to be more robust to repetitive motion. The nylon conduit is only semi-flexible, so it enforces a relatively large minimum bending radius on the wires within, while still sticking to the black quad A1 color motif.
In the last post, I described the newer gait engine which takes a desired command and produces a set of gait parameters. At that point, the gait engine needs to implement those gait parameters in a way that is stable with respect to disturbances and keeps the two legs properly out of phase with one another.
The gait variables that the gait selection procedure emits are as follows, each “leg” is actually a pair of legs.
As hinted in my earlier video I’ve been working towards some higher speed gaits with the quad A1. To accomplish that, I had to restructure the gait sequencing logic to permit changing cycle times and allow flight phases.
For now, I’ve tentatively broken down the trot gait into 5 regimes, based on how fast the machine is moving:
Depending upon the current commanded rotation rate and translation velocity, the distance available for the legs to travel through may change. This uses the same mechanism from the step selection technique to determine the maximum distance at each update cycle, then selects which of the above regimes is active based on the commanded speed.