Archives: Dynamics

Another quad A1 speed record - 2.5 m/s

In two previous posts (part 1, part 2) I discussed some changes I made to the gait sequencing on the quad A1. Things are working relatively well now, sufficient that I was able to take this compilation video in one sitting without any gait or mechanical failures! I actually took a lot of the outdoor shots from this video in the same session, so things are definitely getting more robust.

Walking in semi-rugged terrain

While testing the improved gait sequencing for the quad A1 I got some footage of it traversing a few different types of outdoor semi-rugged terrain.

Tree roots

The first clip shows it walking over some tree roots. In this particular instance, it just uses a high stepping gait, which allows the feet to get on top of the root. The gait sequencing doesn’t handle walking over the taller part of the root very well yet… the robot can get “high centered” on two legs, with the other two flailing in the air.

Stable gait sequencing

In the last post, I described the newer gait engine which takes a desired command and produces a set of gait parameters. At that point, the gait engine needs to implement those gait parameters in a way that is stable with respect to disturbances and keeps the two legs properly out of phase with one another.

The gait variables that the gait selection procedure emits are as follows, each “leg” is actually a pair of legs.

Higher speed gait formulation

As hinted in my earlier video I’ve been working towards some higher speed gaits with the quad A1. To accomplish that, I had to restructure the gait sequencing logic to permit changing cycle times and allow flight phases.

For now, I’ve tentatively broken down the trot gait into 5 regimes, based on how fast the machine is moving:

  1. At the slowest speeds, the flight legs swing through a step in the configured maximum flight time. The interval between flight times is fixed at a configured maximum. Here the speed is determined by how far the flight legs move.
  2. Once the flight legs are moving through their maximum allowed distance, then the amount of time spent with both legs on the ground is reduced in order to increase speed.
  3. At the point when both legs are not on the ground at the same time, then there begins to be a flight phase. Increasing the length of the flight phase increases the speed.
  4. When the flight phase reaches a configured maximum, then the swing time is decreased until it reaches a configured minimum.
  5. When the swing time is at a configured minimum, the flight time is at a configured maximum, and the legs are moving through their maximum range, then the machine is moving at its maximum speed.

Depending upon the current commanded rotation rate and translation velocity, the distance available for the legs to travel through may change. This uses the same mechanism from the step selection technique to determine the maximum distance at each update cycle, then selects which of the above regimes is active based on the commanded speed.

Trotting with a flight phase

Here’s another short video only update, I’ve been experimenting with flight phases on the quad A1. With the gait formulation as I have it now, it isn’t terribly stable, but with some coaxing videos are possible:

First look at higher speed gaits

I’ve started some development on higher speed gaits for the quad A1! No real details to report now, just a video showing the first time I tested it not in simulation. I will admit these clips were cherry-picked, as there are problems still, but it is a start!

Testing real-life hill operation

In part 1, part 2, and part 3 of this series, I developed a method for keeping the robot balanced on hills in simulation. This is just a short video update demonstrating the results for a variety of gaits on a gentle-ish hill (the slope is around 7 degrees).

Operating on sloped surfaces

Not too long ago, I ran some outdoor experiments, and while piloting the quad A1 around, realized that it wasn’t going to get very far if it was restricted to just flat ground.

Since the control algorithms are completely ignorant of slopes, the center of gravity of the machine can easily get too close to the support polygon when resting, and similarly fails to stay balanced over the support line during the trot gait.

Balancing gait in 2D

After getting a gait which looked like it could balance across the leg support line in 1D, I needed to extend that to 2D and try it out on the robot.

Extension to 2D

Extending this to two dimensions wasn’t too bad. I just did a bunch of geometry to follow the path traced out by a given 2 dimensional velocity and rotation rate, intersected with a line segment:

Given this function, the logic to select a swing target is basically the same as in the 1 dimensional case. We now create two “virtual legs”, which consist of two feet ganged together and produce a single support line. At each time instant when all legs are in stance, we look at the time remaining until each of the virtual legs would cross the center of mass at the current velocity. As soon as one hits the half-swing point, we start a swing.