Archives: Control

moteus with velocity=NaN

When commanding a moteus controller, many of the registers defined in the reference documentation give explicit semantics when the value is passed as either a floating point NaN value or the “maximally negative integer” for integer encodings. Those that do not specify a meaning for NaN are “undefined” and anything can happen. For the most part, this isn’t a problem, but in one specific case users were repeatedly caught off guard.

Three common registers often set in position mode, (also accessible by the unlabeled first three arguments to “d pos”), are 0x020 “target position”, 0x021 “target velocity”, and 0x025 “maximum torque”. Target position has a defined meaning when set to NaN: the controller assumes that the target position is the current target position, or the sampled position if the controller is not yet in position mode. Maximum torque also has a defined meaning when set to NaN: it then uses the maximum torque as defined by the maximum phase current limit. However, target velocity had no such definition, and in practice when used, resulted in the controller becoming mostly non-functional.

Forbidding stop_position with acceleration limits

When the moteus acceleration and velocity limits were first announced more than a year ago, it was noted that the semantics of using the legacy “stop_position” along with the new acceleration and velocity limits was “not particularly useful”. In the meantime, I’ve seen many cases where people get tripped up by this, even more so since developer kits now come with velocity and acceleration limits configured.

To mitigate that, as of firmware release 2023-09-26, moteus will now fault with code 44 if you attempt to use a stop_position while acceleration or velocity limits are configured. Here’s a quick reminder on how to upgrade:

moteus clock synchronization

The moteus controller, when it implements its control algorithms, uses the internal RC oscillator of the onboard STM32G4 microcontroller to calculate things like velocity and to advance position over time. Typically, this is accurate to within 0.5% which is more than sufficient for most applications. However, there are cases where it does matter.

One common case is when multiple moteus controllers are operated together, and either the relative velocities of the controllers must match closely, or the time required to complete long trajectories must match closely. For example, if a trajectory would take 100s to complete, then a 0.5% difference in clock rate between two controllers would result in one completing 0.5s before the other.

Velocity and acceleration limited trajectories

One of the oldest requested features for the moteus brushless controller has been a form of trajectory control beyond constant velocity trajectories. For most applications this is not an actual deal-breaker, because arbitrary trajectories can be approximated by piecewise linear constant velocity trajectories in the application layer. However, for many people, that is big hurdle to jump over to start with, and for some, it can actually limit application effectiveness because a fair amount of CAN bandwidth is required to achieve the high rate control necessary for smooth motion.

customizable PWM rate for moteus

Being a switch mode 3 phase motor driver, the moteus controller changes the current flowing through the phases of a motor by rapidly switching the phase terminals between the positive input voltage and the input ground. The control of this switching is denoted “pulse width modulation”, or PWM for short. To date, the rate at which it has switched has been fixed in firmware at 40kHz. As of release 2022-03-12, this can now be altered anywhere between 15kHz and 60kHz to better optimize peak power capability, control bandwidth, maximum speed, and heat generation.

Fixed voltage mode for moteus

The most recent moteus firmware release, 2021-12-03, added not one, but two new control modes for less common applications. Previously, mentioned was the “voltage_control_mode” for using gimbal style high resistance motors without changing the sense resistors. In this post, I’ll describe a similarly named, but very different mode “fixed voltage mode” for operating brushless motors as if they were a stepper motor.

For some applications, you don’t care about torque control, or about power consumption at all. Traditionally you would use a stepper motor in those applications, with a correspondingly less expensive stepper motor driver. However, in some cases you may still want to have high rate trajectory control, CAN based telemetry, or have already standardized on moteus controllers for other moving parts of your solution. There are two new options that can be used in such situations:

Filtering encoder values in moteus

TLDR: moteus can now filter the encoder, resulting in less audible noise. Use firmware version 2021-04-20 and ‘pip3 install moteus’ version 0.3.19, then re-calibrate to get the benefits.

Background

The moteus controller uses an absolute magnetic encoder to measure the position of the rotor. It uses this knowledge to accurately control the current through the three phases of a brushless motor so that the desired torque is produced, i.e. “field oriented control”. This works well, but has some downsides. One, is that magnetic encoders work by sensing the magnetic field produced by a “sensing magnet” that is somehow affixed to the rotor. This sensing process always introduces some noise, so that the sensed rotor position is never perfect.

Auto-tuning current control loops

Since the moteus controller was first released, it has implemented a two-stage controller. The outer loop is a combined position/velocity/torque PID controller, which takes as an input a position trajectory, and outputs a desired torque. The inner loops accepts this torque, and uses a PI controller to generate the Q phase voltage necessary to achieve that torque.

Until now, the constants for that PI controller were left as an exercise for the reader. i.e. there were some semi-sensible defaults, but the end-user ultimately had to manually select those constants to achieve a given torque bandwidth. That isn’t too much of a problem for a sophisticated user, but for the rest of us, it is hard to know how to go from a desired torque bandwidth to reasonable PI gains.

moteus position anti-windup

The moteus controller uses a somewhat unique integrated position / velocity / torque controller with per-command configurable proportional and derivative gains. Through various combinations of these settings, it can emulate many different types of controllers, but one that it has struggled with until now was a pure velocity controller.

It has been minimally possible to use moteus as a purely velocity controlled since wraparound support was implemented, but that came with a caveat. Either the proportional term needed to be set to 0, in which case velocity tracking performance was poor, or if the proportional term was non-zero, an external torque would cause the position to drift arbitrarily far from the target position. Then if the external torque were released, the controller would “catch up” for all the lost ground, moving very rapidly.

Stable gait sequencing

In the last post, I described the newer gait engine which takes a desired command and produces a set of gait parameters. At that point, the gait engine needs to implement those gait parameters in a way that is stable with respect to disturbances and keeps the two legs properly out of phase with one another.

The gait variables that the gait selection procedure emits are as follows, each “leg” is actually a pair of legs.