moteus firmware release 2021-01-14

Sometimes you find bugs, and sometimes the bugs find you! While getting ready to release some updated qdd100 beta servos, I was investigating speed control in the moteus firmware and discovered an unwelcome surprise!

Voltage feedforward

To improve dynamic response under high accelerations, moteus uses a voltage feedforward term as part of its control loop. When trying to command a specific current, it normally applies a PI controller to determine the resulting D and Q phase voltages to apply. The feedforward component of this looks at the phase resistance and the current rotor velocity, and determines a zeroth order estimate of what voltage would be required to achieve that current under a no-load condition, only using the PI controller to determine the difference.

power_dist load test circuit

While testing some variants and new versions of the power_dist board, I wanted to be able to simulate the types of loads that it experiences with a fully loaded robot. Some things are easy, like this capacitor attached to an XT30 connector:

I also have giant power resistors in a similar form factor:

However, a dumb load resistor isn’t a particularly representative load. Most likely, the loads that a power_dist will drive are active loads with switching regulators. When the output voltage is lower, the current will be correspondingly higher. That is especially important when validating pre-charge behavior, because it means that the current is much higher during the initial pre-charge window than it would be for a pure resistive load.

Microscope mount

I’ve been using a relatively inexpensive microscope for SMD soldering work for some time, connected via HDMI to a 24" monitor.

For the price, I’m definitely happy with it, but as I’ve been doing more soldering work, I’ve become less happy with the mounting stand. The arm it mounts to often does not reach far enough to get the optics over the part of the board in question, or the base is too tall or wide to fit under it. If you want to examine something from the side, you have to tip the entire base over. I have resorted to spinning the microscope around and counterbalancing the base with a large weight, which works for some definition of “works” but only improves the reach by a little bit.

new product day: mj5208 brushless motor

Welcome to the newest mjbots.com product, the mj5208:

This is a high quality 5208 sized 330Kv wound brushless motor with short pigtails intended to connect to moteus controllers. All the moteus devkits as of last week are shipping using this motor instead of the previous “semi-random” motor.

Specifications:

  • Peak torque: 1.7 Nm
  • Mass (with wires): 193g
  • Peak power: 600W
  • Kv: 330
  • Dimensions: 63x25mm

There are two bolt patterns on the output, a 3x M3 17mm diameter one, and a 2x M3 pattern spaced at 12mm. The stator side has a 4x M3 pattern spaced at 25mm radially and a 3x M2.5 spaced at 32mm. The axle protrudes a few mm from the stator, making it easy to adhere the diametric magnets needed for moteus.

New cross-platform moteus tools!

After receiving many requests via youtube, discord, and email, I’ve finally gone ahead, bitten the bullet, and updated all of the moteus tools to be pure python and work in a cross platform manner. Now, the only thing you need to do to install pre-compiled versions of tview and moteus tool on most* platforms is:

pip3 install moteus_gui
python3 -m moteus_gui.tview    # (or maybe just tview)
python3 -m moteus.moteus_tool  # (or maybe just moteus_tool)

I’ve personally tested these on Linux, Windows, and Raspberry Pi, and others have at least verified basic operation on Macs. Python 3.7 or greater is required.

New product day: moteus heat spreader

The moteus controller is capable of a lot of instantaneous power. However, to fully make use of that power, you’ll need to keep the mosfets cool on the board. moteus has two mechanisms for that:

  1. A heatsink can be mounted to the bottom side of the PCB between the board and the motor. This is most useful when integrated into a servo motor, and the servo housing can be used as a heatsink.
  2. Mounted to the top of the board, attaching to the MOSFETS directly.

In addition to the MOSFETs, the gate driver chip, the DRV8323 can produce large amounts of heat, especially when the controller is run at a higher voltage, like the 44V that the moteus r4.5 supports.

moteus and socketcan

Various users have been trying to use lower-cost Raspberry Pi CAN-FD adapters for the moteus controller for some time (like this one from Seeed), but have had problems getting communication to work. I buckled down and went to debug the problem, discovering that the root of the issue was that the linux kernel socketcan subsystem calculates very sub-optimal CAN timings for the 5Mbps bitrate that moteus uses. This results in the adapters being unable to receive frames sent at the actual 5Mbps rate, but instead only slightly slower.

Automated wire stripper and cutter

Over the Thanksgiving day holiday, I knew I had a bunch of harnesses to build. Rather than being a good corporate steward and actually building them, I instead built a machine to automate the first of the 3 time consuming parts of the harness construction: wire cutting and stripping.

This was just thrown together from two cosmetically damaged moteus devkits, a Raspberry Pi 3 an old development version of a pi3hat, a hand wire stripper, two synthetic rubber bands, an off the shelf 24V supply, and a bunch of 3d printed parts.