Archives: Robots

hoverbot

I made a thing!

With that video out of the way, here is a bit more of a write-up!

Motivation

The hoverbot is a simple 2 wheel balancing robot. I built it to demonstrate how the moteus-c1 can be used to drive hoverboard motors and to demonstrate the capabilities of the pi3hat for high rate control and effective attitude reference calculation. It is powered by a single Bosch 18V cordless drill battery and controlled through an identical websocket based interface as the quad A1, primarily operated by a phone with a paired bluetooth joystick.

New Project: Juggling Robot

I’ve been looking for a new motor control project to tackle that is both interesting, and a bit more unique than another Ascento clone. Looking around, I was surprised at the current paucity of robots capable of more advanced juggling feats. There are quite a few that can manage 3 balls, and nearly none I’ve found that can manage more, with the exception of Nathan Peterson’s inclined ball roller. I figure that I have access to lots of factory second moteus controllers, which are capable of quite demanding control applications, so I should be able to put something together.

Automated wire stripper and cutter

Over the Thanksgiving day holiday, I knew I had a bunch of harnesses to build. Rather than being a good corporate steward and actually building them, I instead built a machine to automate the first of the 3 time consuming parts of the harness construction: wire cutting and stripping.

This was just thrown together from two cosmetically damaged moteus devkits, a Raspberry Pi 3 an old development version of a pi3hat, a hand wire stripper, two synthetic rubber bands, an off the shelf 24V supply, and a bunch of 3d printed parts.

Another quad A1 speed record - 2.5 m/s

In two previous posts (part 1, part 2) I discussed some changes I made to the gait sequencing on the quad A1. Things are working relatively well now, sufficient that I was able to take this compilation video in one sitting without any gait or mechanical failures! I actually took a lot of the outdoor shots from this video in the same session, so things are definitely getting more robust.

Snow day

It’s only October, but the weather is what it is and robots will do what they do!

Walking in semi-rugged terrain

While testing the improved gait sequencing for the quad A1 I got some footage of it traversing a few different types of outdoor semi-rugged terrain.

Tree roots

The first clip shows it walking over some tree roots. In this particular instance, it just uses a high stepping gait, which allows the feet to get on top of the root. The gait sequencing doesn’t handle walking over the taller part of the root very well yet… the robot can get “high centered” on two legs, with the other two flailing in the air.

Playmates

Just a video update… I’m not generally offering the quad A1 for sale *yet*, but if you’re interested in an alpha version, you can write info@mjbots.com

You can of course already get nearly all the non-3d printed parts at https://mjbots.com

Testing real-life hill operation

In part 1, part 2, and part 3 of this series, I developed a method for keeping the robot balanced on hills in simulation. This is just a short video update demonstrating the results for a variety of gaits on a gentle-ish hill (the slope is around 7 degrees).