Archives: 2020

Video in tplot2 (diagnostics part 6)

This is part of a continuing series on diagnostics tooling for the mjbots quad series of robots.  The previous editions can be found at 1, 2, 3, 4, and 5.  Here, I’ll cover the first extension I developed for tplot2 to make it more useful to diagnose dynamic locomotion issues.

Background

Diagnosing problems on robots is hard.  The data rates are high, sensing is imperfect, and there are many state variables to keep track of.  Keeping track of problems that are related to erroneous perception are doubly challenging.  Without a recording of the ground truth of an event, it can be hard to even know if the sensing was off, or if some other aspect was broken.  Fortunately, for things the size and scope of small dynamic quadrupeds, video recording provides a great way to keep a record of the ground truth state of the machine.  Relatively inexpensive equipment can record high resolution images at hundreds of frames a second documenting exactly where all the extremities of the robot were and what it was doing in time.

tplot2 (diagnostics part 5)

In previous posts, (1, 2, 3, 4), I covered the updates I made to the underlying serialization and log file format used in mjlib and the quad A1.  This time I’ll talk about the graphical application that uses that data to investigate live operation.

History

You might note the “2” in the name and realize that yes, this is the second incarnation in the mjmech repository, tplot being the initial.  The original tplot.py was a largely a one-day hack job that glued together the python log bindings I had with matplotlib.  It provided a time scrubber, a tree view, and a plot window where any number of things could be plotted against one another.

Log file format (diagnostics part 4)

In parts 1, 2, and 3 I covered some motivation for the updated mjlib diagnostics system and the serialization of individual structures.  In this post, I’ll cover how those structures are written into a file from an embedded system like a robot and how diagnostic tools can access them efficiently.

Goals

The top level goals are:

  • Efficient to write live from an embedded system: The quad A1 generates log data currently at 400Hz, consisting of hundreds to thousands of telemetry data points in every update.  It does this on a relatively low-end raspberry pi 3b+.  The format should be able to support writing data at high rates without a significant CPU burden.
  • Efficient seeking by time and record: Readers of the file should be able to efficiently seek by time in the stream, as well as extract all of a single record without having to process unnecessary data from the log.
  • Self contained: While this property  in the log comes from the underlying mjlib serialization format, it is worth re-iterating here.  All information necessary to return a JSON or CSV like structure for each instance should be present within the log.

Design

The detailed design of the log format is documented at README.md, here I will give a brief summary.

C++ serialization API (diagnostics part 3)

In the previous issue in this series, I described the schema and data elements of the mjlib serialization format.  Here, I’ll describe the API used to convert between C++ structures and the corresponding schema and data serializations.

First, I’ll start by saying this API is far from perfect.  It hits a certain tradeoff in the design space that may not be appropriate for every system.  I have developed and used similar APIs professionally both at Jaybridge and TRI, so it has seen use in millions of lines of code, but not billions by any stretch.  It is also mostly orthogonal to the rest of the design, and alternate serialization APIs could be built while still maintaining the performance and schema evolution properties described in parts 1 and 2.  Now with that out of the way, the library API:

Revised mjlib serialization design (diagnostics part 2)

As discussed previously, I recently significantly revised the serialization format used by the mjbots quad A1 based on experience in previous professional domains, and from studying newer external projects like Apache AVRO.  Here I’ll describe the design of the serialized representation, which is more completely defined at: mjlib/telemetry/README.md

Refresher and definitions

As a brief refresher, this serialization format is intended to be used primarily to record telemetry from embedded systems, where that telemetry data may be persisted on disk for a long time.  Secondarily, it can be used to inspect the results of a live system.  The primitive it operates on is a “record”, which is logically a structure of elements which is emitted at some intervals over time.  For any given record, it logically breaks it up into a “schema” and a “data” portion.  The schema describes what types of elements are present in the structure, their names and relationships.  The “data” portion contains the minimum amount of information necessary to communicate one instance of the structure, assuming that the receiver already has a copy of the schema.

Updated serialization library (diagnostics part 1)

Now that I have the qdd100 servo in beta phase, the IMU working at full rate, and the quad A1 is moving around I’m getting closer to actually working to improve the gaits that the machine can execute.  To date, the gaits I have used completely ignore the IMU and only use the feedback from the joints in order to maintain force in 3D.  With tuning and on controlled surfaces this can work well, but if you go outside the happy regime, then it can undergo significant pitch and roll movements during the leg swing phase, which at best results in a janky walk, and at worst results in oscillation or outright instability.

Multiple axes in implot

I used Dear Imgui for the simple Mech Warfare control application I built earlier and was relatively impressed with the conciseness with which one could develop effective (although not necessarily the prettiest), interactive and response user interfaces in C++.  For some time I had been planning on developing a new diagnostic application for the mjbots quad that would allow plotting like the original tplot.py, but would also integrate recorded video and 3D rendering and diagnostics.  I had assumed I would use HTML/JS because it is the cool new thing, but I never got up the energy to make it happen, because every technical step along the way had big hurdles.  I figured I would give Dear Imgui a try, but the big thing it was missing was plotting support.

More MLCC learning

It seems that I’m learning much about PCB design the very hard way.  Back last year I wrote up my discovery of MLCC bias derating.  Now I’ll share some of my experiences with MLCC cracking on the first production moteus controllers.

When I was first putting the production moteus controllers through their test and programming sequence, I observed a failure mode that I had yet to have observe in my career (which admittedly doesn’t include much board manufacturing).  When applying voltage, I got a spark and puff of magic smoke from near one of the DC link capacitors on the left hand side.  In the first batch of 40 I programmed, a full 20% failed in this way, some at 24V, and a few more at a 38V test.  I initially thought the problem might have been an etching issue resulting in voltage breakdown between a via and an internal ground plane, but after examining the results under the microscope and conferring with MacroFab determined the most likely cause was cracking of the MLCCs during PCB depanelization.