Archives: 2018-11

First closed loop vector control

I’ve reached a minor milestone in developing improved actuators for Super Mega Microbot.  Previously I demonstrated basic closed loop control using a VESC.  Now I have a custom control board running closed loop vector-based current and position control on a single brushless servo!  I’ll hopefully write up pieces in more depth later, but this post can serve as a proof of existence.

First, boards as received from MacroFab:

Mounted onto the planetary gearbox:

rules_mbed - bazel for mbed

When working on the firmware for Super Mega Microbot’s improved actuators, I decided to try using mbed-os from ARM for the STM32 libraries instead of the HAL libraries.  I always found that the HAL libraries had a terrible API, and yet they still required that any non-trivial usage of the hardware devolve into register twiddling to be effective.  mbed presents a pretty nice C++ API for the features they do support, which is only a little less capable than HAL, but still makes it trivial to drop down to register twiddling when necessary (and includes all of the HAL by reference).

First bazel-ified packages

In “Building mjmech dependencies with bazel”, I described my rationale as it were for attempting to build all of the mjmech dependencies within bazel for cross compilation onto the raspberry pi.  mjmech has two big dependencies which were going to cause most of the transitive fallout:

  • gstreamer - We use gstreamer to interface with the webcam, format RTSP streams for FPV on the control station, and to render the control station and heads up display.  Granted, not all of gstreamer is used, but we do depend on features that require ffmpeg and X11.
  • opencv - The use of opencv had been minimal to non-existant previously, as we hadn’t actually done any computer vision on the robot itself.  However, one of the big motivations for switching to the raspberry pi in the first place was to at least to be able to do active target tracking onboard.

And then there are a few other direct dependencies that are “easy”, if nothing else because they have such few transitive dependencies.

Shapeways dimensional tolerances

The first version of the planetary gearbox as 3d printed from Shapeways required a fair amount of post-machining to get all the pieces to fit together.  I wanted to get to a point where I could just order some parts and have a reasonable expectation of them mostly working out of the box.  To make that happen, I’d need to get a better understanding of where the tolerances were coming from.

Understanding the problem

Shapeways provides a fair amount of documentation on the processes and accuracy you can expect generally.  Most of this is detailed in “Design rules and detail resolution for SLS 3D printing”, however the results there have some limitations.  Primarily, they are only applicable to the specific geometries tested.  Shrinkage is qualified as +- 0.15% of the largest dimension, and is likely influenced by the exact printed geometry.  Secondarily, in the documented tests, the designers had full control over the part alignment in the print.  The standard shapeways platform does not allow you to orient parts, you are at the whim of their technicians where the Z axis will end up.

Building mjmech dependencies with bazel

Previously, I set up bazel to be able to cross compile for the raspberry pi using an extracted sysroot.  That sysroot was very minimal, basically just glibc and the kernel headers.  The software used for SMMB has many dependencies beyond that though, including some heavyweight ones such as gstreamer and I needed some solution for building against them.

Options

There were two basic options:

  1. Install all the dependencies I cared about on an actual raspberry pi, and extract them into the sysroot.
  2. Build all the dependencies I cared about using bazel’s external projects mechanism.

The former would certainly be quicker in the short term, at the expense of needing to check in or otherwise version a very large sysroot.  It would also be annoying to update, as I would need to keep around a physical raspberry pi and continually reset it to zero in order to generate suitably pristine sysroots.